Hasil bagi dari jumlahan sepuluh bilangan Fibonacci yang berturutan oleh 11 adalah bilangan Fibonacci ketujuh
Abstract
Tujuan penelitian ini adalah membuktikan bahwa penjumlahan sepuluh bilangan Fibonacci yang berturutan apabila dibagi 11 hasilnya adalah bilangan Fibonacci ketujuh dalam susunan bilangan tersebut. Metode penelitian yang digunakan adalah studi literatur. Pembuktian dilakukan dengan Prinsip Induksi Matematika. Hasil penelitian mendapatkan teorema baru bahwa hasil bagi atas jumlahan sepuluh bilangan Fibonacci yang berturutan oleh 11 adalah bilangan Fibonacci yang ketujuh dalam susunan bilangan tersebut.
Downloads
References
Chasnov, J. R. (2016). Fibonacci Numbers and the Golden Ratio. Dapat diakses di https://www.math.ust.hk/~machas/fibonacci.pdf (13 Oktober 2019).
Kolkova, A. (2017). Application of Fibonacci Numbers on the Technical Analysis of EUR/USD Currenct Pair. Dapat diakses di http://www.researchgate.net/publication/316788630 (13 Oktober 2019).
Lipschutz dan Lipson. (2008). Matematika Diskrit Edisi Ketiga, diterjemahkan Layukallo. Jakarta: Erlangga.
Luma, A. and Raufi, B. (2010). Relationship between Fibonacci and Lucas Sequence and their Application in Symmetric Criptosystem. Latest Trend on Circuits, System and Signal. Vol. 1, No. 1, pp. 146-150.
Prabowo, A. (2014). Matematika Nisbah Emas. Bandung: Alfabeta.
Scott, T. C. and Marketos, P. (2014). On the Origin of the Fibonacci Sequence. Dapat diakses di https://www.researchgate.net /publication/280223479_On_the_Origin_of_the_Fibonacci_sequence (13 Oktober 2019).
van Gend, R. (2014). The Fibonacci Sequence and the Golden Ratio in Music. Note on Number Theory and Discrete Mathematics. Vol. 20, No. 1, pp. 72-77.
Copyright (c) 2019 JUMLAHKU: Jurnal Matematika Ilmiah STKIP Muhammadiyah Kuningan
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Open Access
JUMLAHKU:Jurnal matematika ilmiah STKIP Muhammadiyah Kuningan is a national peer reviewed and open access journal that publishes significant and important research from all area of mathematics education.
This journal provides immediate open access to its content that making research publish in this journal freely available to the public that supports a greater exchange of knowledge.
Copyright
Submission of a manuscript implies that the submitted work has not been published before (except as part of a thesis or report, or abstract); that it is not under consideration for publication elsewhere; that its publication has been approved by all co-authors. If and when the manuscript is accepted for publication, the author(s) still hold the copyright and retain publishing rights without restrictions. Authors or others are allowed to multiply article as long as not for commercial purposes. For the new invention, authors are suggested to manage its patent before published. The license type is BY-NC-SA 4.0.
Disclaimer
No responsibility is assumed by publisher and co-publishers, nor by the editors for any injury and/or damage to persons or property as a result of any actual or alleged libelous statements, infringement of intellectual property or privacy rights, or products liability, whether resulting from negligence or otherwise, or from any use or operation of any ideas, instructions, procedures, products or methods contained in the material therein.