PROSES FOLDING BACK SISWA DENGAN RESILIENSI MATEMATIS SANGAT TINGGI PADA MASALAH OPEN-ENDED

  • Wahyu Widyastuti Universitas Pendidikan Indonesia
  • Dadang Juandi Universitas Pendidikan Indonesia
  • Aan Hasanah Universitas Pendidikan Indonesia

Abstract

Penting bagi pendidik untuk tidak hanya melihat hasil pekerjaan siswa, tetapi juga proses pemahaman matematis saat siswa menyelesaikan masalah. Folding back merupakan proses krusial dalam teori Pirie-Kieren tentang growth of mathematical understanding. Folding back adalah proses ketika siswa kembali ke level pemahaman yang lebih rendah untuk mengembangkan pemahaman matematis mereka. Penelitian ini bertujuan untuk mengidentifikasi gambaran keberagaman proses folding back siswa dalam menyelesaikan masalah open-ended pada materi trigonometri, khususnya pada siswa dengan kategori resiliensi matematis sangat tinggi. Metode yang digunakan dalam penelitian ini adalah studi kasus di kelas X Tata Busana dengan melibatkan 2 orang subjek penelitian. Terdapat 3 temuan yang dihasilkan dari penelitian ini yaitu; (1) siswa dengan resiliensi matematis yang sangat tinggi sudah mampu melakukan folding back secara mandiri; (2) siswa seringkali mengalami folding back ke level primitive knowing; serta (3) terdapat siswa yang melakukan folding back ke level formalizing setelah level inventing, guna membangun level pemahaman yang lebih tinggi.

Keywords: Folding back, Pirie-Kieren, Resiliensi Matematis

Downloads

Download data is not yet available.

References

Attami, D., Budiyono, B., & Indriati, D. (2020). The mathematical problem-solving ability of junior high school students based on their mathematical resilience. Journal of Physics: Conference Series, 1469(1), 012152.

Capraro, M., Capraro, R., & Cifarelli, V. (2007). What are students thinking as they solve open-ended mathematics problems. Proceedings of the ninth international conference of Mathematics Education in a Global Community (pp. 124-128). Charlotte: University of North Carolina.

Chinn, S. (2014). Mathematical resilience: what is it and why is it important? In S. Chinn, The Routledge International Handbook of Dyscalculia and Mathematical Learning Difficulties (pp. 365-373). Oxfordshire: Routledge.

Hafiz, M., & Dahlan, J. (2017). Comparison of mathematical resilience among students with problem based learning and guided discovery learning model. Journal of Physics: Conference Series, 895(1), 012098.

Haryanti, M., Herman, T., & Prabawanto, S. (2019). Analysis of students’ error in solving mathematical word problems in geometry. Journal of Physics, 1157(4), 042084.

Johnston-Wilder, S., & Lee, C. (2010). Mathematical Resilience. Mathematics Teaching, 218, 38-41.

Johnston-Wilder, S., Brindley, J., & Dent, P. (2014). A survey of mathematics anxiety and mathematical resilience among existing apprentices. London: The Gatsby Charitable Foundation.

Kooken, J., Welsh, M., McCoach, D., Johnston-Wilder, S., & Lee, C. (2016). Development and validation of the mathematical resilience scale. Measurement and Evaluation in Counseling and Development, 49(3), 217-242.

Lee, C., & Johnston-Wilder, S. (2017). The construct of mathematical resilience. Understanding emotions in mathematical thinking and learning, 269-291.

Martin, L., & Towers, J. (2016a). Folding Back and Growing Mathematical Understanding: A Longitudinal Study of Learning. International Journal for the Lesson and Learning Studies, 5(4), 281-294.

Martin, L., & Towers, J. (2016b). Folding back, thickening and mathematical met-befores. Folding back, thickening and mathematical met-befores, 43(2), 89-97.

Nopa, J., Suryadi, D., & Hasanah, A. (2019). The 9th Grade Students' Mathematical Understanding in Problem Solving Based on Pirie-Kieren Theory. Journal of Physics: Conference Series, 1157(1), 042122.

Pirie, S. (1988). Understanding: Instrumental, relational, intuitive, constructed, formalised...? How can we know? For the Learning of Mathematics, 8(3), 2-6.

Pirie, S., & Kieren, T. (1989). A Recursive Theory of Mathematical Understanding. For the Learning of Mathematics, 9(3), 7-11.

Pirie, S., & Kieren, T. (1994a). Growth in Mathematical Understanding: How Can We Characterise It and How Can We Represent It? Learning Mathematics, 61-86.

Pirie, S., & Kieren, T. (1994b). Beyond Metaphor: Formalising in Mathematical Understanding Within Contructivist Environments. For the Learning of Mathematics, 4(1), 39-43.

Sawada, T. (1997). Developing Lesson Plans. In J. Becker, & S. Shimada, The Open-Ended Approach: A New Proposal for Teaching Mathematics (pp. 23-35). Reston: National Council of Teachers of Mathematics.

Sengul, S., & Argat, A. (2015). The Analysis of Understanding Factorial Concept Processes of 7th Grade Students who have Low Academic Achievements with Pirie Kieren Theory. Procedia - Social and Behavioral Sciences, 197, 1263-1270.

Shimada, S. (1997). The Significance of an Open-Ended Approach. In J. Becker, & S. Shimada, The Open-Ended Approach: A New Proposal for Teaching Mathematics (pp. 1-9). Reston: National Council of Teachers of Mathematics.

Susiswo, Subanji, Chandra, T., Purwanto, & Sudirman. (2019). Folding Back and Pseudo-Folding Back of the Student when Solving the Limit Problem. Journal of Physics: Conference Series, 1227(1), 012014.

Varygiannes, D. (2013). The impact of open-ended tasks. Teaching children mathematics, 20(5), 277-280.

Zanthy, L., Kusuma, Y., & Soemarmo, U. (2019). Mathematical resilience analysis of senior high school students. Journal of Physics: Conference Series, 1315(1), 012074.

Published
2023-05-16
How to Cite
Wahyu Widyastuti, Juandi, D., & Hasanah, A. (2023). PROSES FOLDING BACK SISWA DENGAN RESILIENSI MATEMATIS SANGAT TINGGI PADA MASALAH OPEN-ENDED. JUMLAHKU: Jurnal Matematika Ilmiah STKIP Muhammadiyah Kuningan, 9(1), 62-73. https://doi.org/10.33222/jumlahku.v9i1.2644
Abstract viewed = 114 times
PDF downloaded = 112 times